skip to main content


Search for: All records

Creators/Authors contains: "Silic, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a multi-agent flocking scheme for real-time control of homogeneous unmanned aerial vehicles (UAVs) based on smoothed particle hydrodynamics. Swarm cohe- sion, collision avoidance, and velocity consensus are concurrently satisfied by characterizing the emerging macroscopic flock as a continuous fluid. Two vital implementation issues are addressed in particular including latency in information fusion and directionality of com- munication due to antenna patterns. Symmetric control forces are achieved by meticulous scheduling of inter-vehicle communication to sustain the motion stability of the flock. A gener- alized, anisotropic smoothing kernel that takes into account the relative position and attitude between agents is adopted to address potential flocking instability introduced by communi- cation anisotropy due to the antenna radiation pattern. The feasibility of the technique is demonstrated experimentally using a single UAV avoiding a virtual obstacle. 
    more » « less